Bachelor of Science [B.Sc] (Applied Mathematics)

Course Structure:

The course structure is a combination of classroom teaching and practical classes. Each student is supposed to attend all the theoretical classes to understand the abstract concepts of mathematics and also the practical classes so that the student gets an understanding of the practical usage of all the abstract ideas.

Syllabus:

The major topics taught under this course include algebra, calculus, differential equations and differential geometry along with statistics and probability. All the courses taught in this program deal with the practical applications in other disciplines.

Name of the course

Topics Covered

Description

Calculus

Hyperbolic functions, Leibniz rule and its applications to problems of type eax+bsinx, eax+bcosx, (ax+b)n sinx, (ax+b)n cosx, Reduction formulae, Techniques of sketching conics, reflection properties of conics, rotation of axes and second degree equations, etc.

The main aim of this course is to make the students acquainted with the basic concepts of calculus and analytic geometry through theoretical teaching and practicals.

Algebra

Polar representation of complex numbers, nth roots of unity, De Moivre’s theorem for rational indices and its applications, Equivalence relations, Functions, Composition of functions, Systems of linear equations, Introduction to linear transformations, matrix of a linear transformation, etc.

This paper focuses on the concepts of algebra and complex numbers along with Graph theory and applications of linear algebra.

Real Analysis

Review of Algebraic and Order Properties of R, ߜ-neighborhood of a point in R, Idea of countable sets, uncountable sets and uncountability of R, Sequences, Bounded sequence, Convergent sequence, Limit of a sequence, Infinite series, convergence and divergence of infinite series, Cauchy Criterion, etc.

This paper deals with the concepts of real analysis.

Differential Equations

Differential equations and mathematical models, Introduction to compartmental model, exponential decay model, lake pollution model etc., General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Equilibrium points, Interpretation of the phase plane, predatory-prey model and its analysis, etc.

The paper deals with the computing and modeling of differential equations and its practical approach using Maple and MATLAB.

Theory of Real Functions

Limits of functions (߳െߜ approach), sequential criterion for limits, divergence criteria, Differentiability of a function, Caratheodory’s theorem, Cauchy’s mean value theorem, Riemann integration, Riemann conditions of integrability, Improper integrals, Pointwise and uniform convergence of sequence of functions, Limit superior and Limit inferior. Power series, radius of convergence, etc.

This paper gives the elementary understanding of the real functions and their analysis.

Group Theory

Definition and examples of groups including permutation groups and quaternion groups (illustration through matrices), Properties of cyclic groups, classification of subgroups of cyclic groups, External direct product of a finite number of groups, Group homomorphisms, properties of homomorphisms, Cayley’s theorem, Characteristic subgroups, Commutator subgroup and its properties, etc.

This course deals with topics related to abstract algebra and theory of groups.

PDE and Systems of ODE

Partial Differential Equations – Basic concepts and definitions, Derivation of Heat equation, Wave equation and Laplace equation, Systems of linear differential equations, types of linear systems, differential operators, etc.

Through this paper the students are acquainted with the linear partial differential equations and differential equations in general.

Multivariate Calculus

Functions of several variables, limit and continuity of functions of two variables, Chain rule for one and two independent parameters, directional derivatives, Double integration over rectangular region, Triple integrals, Triple integral over a parallelepiped and solid regions volume by triple integrals, Line integrals, Applications of line integrals, Green’s theorem, surface integrals, integrals over parametrically defined surfaces, etc.

The focus of the paper is calculus and analytical geometry involving basic multivariable calculus, its concepts and contexts and also an understanding of advanced calculus.

Complex Analysis

Limits, Limits involving the point at infinity, continuity, Analytic functions, examples of analytic functions, exponential function, Logarithmic function, trigonometric function, An extension of Cauchy integral formula, consequences of Cauchy integral formula, Liouville’s theorem, Laurent series and its examples, absolute and uniform convergence of power series, uniqueness of series representations of power series etc.

The paper deals with the complex variables and its application and the theory of complex variables.

Rings and Linear Algebra

Definition and examples of rings, properties of rings, integral domains and fields, characteristic of a ring. Ideals, ideal generated by a subset of a ring, operations on ideals, prime and maximal ideals. Ring homomorphisms, properties of ring homomorphisms, polynomial rings over commutative rings, division algorithm, Eisenstein criterion. Vector spaces, subspaces, algebra of subspaces, quotient spaces, etc., Linear transformations, null space, range, rank and nullity of a linear transformation, etc., Dual spaces, dual basis, double dual, transpose of a linear transformation and its matrix in the dual basis, annihilators etc.

The paper is about the concepts of abstract algebra, linear algebra and its applications and geometric approaches.

Mechanics

Moment of a force about a point and an axis, couple and couple moment, Moment of a couple about a line, resultant of a force system etc., Laws of Coulomb friction, application to simple and complex surface contact friction problems, transmission of power through belts, screw jack, wedge, first moment of an area and the centroid, other centers, etc., Conservative force field, conservation for mechanical energy, work energy equation, kinetic energy and work kinetic energy expression based on center of mass, etc.

The course is of engineering mechanics and deals with its statistics and dynamics.

Numerical Methods and Programming

Algorithms, Convergence, Bisection method, False position method, Fixed point iteration method, Newton’s method, Secant method, LU decomposition, Gauss-Jacobi, Gauss-Siedel and SOR iterative methods. Lagrange and Newton interpolation: linear and higher order, finite difference operators. Numerical differentiation: forward difference, backward difference and central difference. Integration: trapezoidal rule, Simpson’s rule, Euler’s method.

The paper is about the numerical analysis and numerical methods for scientific and engineering computation.

Integral Equations and Calculus of Variation

Preliminary Concepts: Definition and classification of linear integral equations. Conversion of initial and boundary value problems into integral equations, Fredholm Integral Equations: Solution of integral equations with separable kernels, Eigen values and Eigen functions, Classical Fredholm Theory: Fredholm method of solution and Fredholm theorems, Volterra Integral Equations: Successive approximations, Neumann series and resolvent kernel. Equations with convolution type kernels. Solution of integral equations by transform methods: Singular integral equations, Hilberttransform, Cauchy type integral equations. Calculus of Variations: Basic concepts of the calculus of variations such as functionals, extremum, variations, function spaces, the brachistochrone problem, Necessary condition for an extremum, Euler`s equation with the cases of one variable and several variables, etc., General Variation: Functionals dependent on one or two functions, Derivation of basic formula, Variational problems with moving boundaries, etc.

The course deals with concepts of integral equations calculus of variations with applications to physics and engineering.

Laplace Transform

Laplace Transform: Laplace of some standard functions, etc,. Finite Laplace Transform: Definition and properties, Shifting and scaling theorem. Z-Transform: Z–transform and inverse Z-transform of elementary functions, etc., Hankel Transform, Hankel Transform, Fourier series, Fourier Transforms.

The topics covered are from advanced engineering mathematics.

Some of the Discipline Specific Electives are:

  • Number Theory
  • Graph Theory
  • Linear Programming
  • Control Theory
  • Approximation Theory
  • Combinatorial Optimization
  • Mathematical Modeling
  • Coding Theory
  • Wavelet Theory
  • Bio-Mathematics
  • Stochastic Processes
  • Difference Equations

There are also a few skill enhancement courses, and these are:

  • Bio-Mathematics
  • Stochastic Processes
  • Difference Equations
  • Bio-Mathematics
  • Stochastic Processes
  • Difference Equations

And the institutes also offer a few of the generic electives. These are:

  • Object Oriented Programming in C++
  • Finite Element Methods
  • Mathematical Finance
  • Econometrics
  • Digital Signal Processing
  • Neural Networks
  • Dynamical Systems
  • Industrial Mathematics
  • Statistical Techniques
  • Modeling and Simulation

Top Institutes:

The course is offered by only a handful of institutes in India. These institutes are:

Name of the Institute

City, State

Government Degree College

Jammu, Jammu and Kashmir

Guru Ghasidas Vishwavidyalaya

Bilaspur, Chhattisgarh

Mayur College

Kapurthala, Punjab

Bachelor of Science [B.Sc] (Applied Mathematics) : 28 answered questions

VIEW ALL

Ques. What is the future of B.Math and B.Stat students in ISI, Kolkata?

● Top Answer By Praniti Das on 28 Sept 21

Ans. ISI Kolkata does not provide a B.Math program. The majority of B.Stat students return for M.Stat while some people join CMI, TIFR, IIM, and other such organizations.  M.Stat employees earn an average of 16–17 LPA, and many of them attend prestigious US graduate institutions. There are no fees for the entire program, and a stipend is provided. So, if you're looking for a career here, your future is bright.Read more
0
0
1 Answer
●●●

Ques. How many marks have been necessary to take admissions in the BHU (math)?

● Top Answer By Vishal Kumar on 15 Nov 22

Ans. The BSc (Maths) entrance exam is BHU is one of the easiest exams. You can score fairly good marks by just going through your 12th-grade Maths, Physics, and Chemistry books. Study Chemistry from NCERT book. A thorough study of the following chapters will get you good marks: Biomolecule Polymer Animes Chemistry in everyday life The questions in the entrance exam are mostly based on direct concepts or formulas. As far as the number of marks necessary is concerned, there is no fixed digit. But at least attempt 70 questions without mistakes. This means you need to score at least 210 marks out of 450. However, this number keeps changing based on the pattern of the question paper.Read more
0
0
1 Answer
●●●

Ques. What should I do after doing math honors from DU?

● Top Answer By Rithvik Singh on 10 Oct 22

Ans. In general, a BSc (Hons) in Math is a good course that leads to a variety of career opportunities, including -  Masters: After completing a BSc Hons in Mathematics, one can pursue a MSc in Mathematics, Statistics, Operational Research, Pure Mathematics, Applied Mathematics, Mathematics and Computing, or Mathematics and Computing. Some prestigious institutes that offer MSc in Mathematics include IITs, IISER, IISc Bangalore, Tata Institute of Fundamental Research, University of Hyderabad, and Chennai Mathematical Institute MBA: Following a BSc Hons in Math, an MBA is a good option for starting your career. Actuarial Science: If you want a job right after graduation, pursuing and passing at least three actuarial science exams will get you a good job. MCA / CODING: The IT industry is one of the fastest growing in INDIA, with many job opportunities available after a BSc Hons in Math. You can pursue IT jobs if you know a little coding, or you can pursue MCA, for which you will have to give NIMCET exams. Teaching: After completing your BSc Hons, you can pursue a career in education by taking the B.ED or, if you want to be a professor or lecturer, the JRF or NET exam. There are various other scopes available for students. They can also pursue a career in Research, go for Government Jobs (SSC), DRDO, ISRO, and so on.Read more
0
0
1 Answer
●●●

Ques. Is an integrated MSc in mathematics and computing in BIT Mesra a good option?

● Top Answer By Deepmoy Ganguly on 09 Aug 23

Ans. Maths and Computing is considered one of the best branches after CS in IITs today. The BIT tag is also quite popular among engineering aspirants so many enthusiasts of Math and CS  go for this branch to avail the opportunities this field offers. From what I have heard, the syllabus is at par with industry needs and the faculty pool is very passionate and approachable.  Mathematics is an indispensable part of Computer Science whether it’s research in data science or development. you need to be proficient in math. This course is designed to bridge the gap between the two which it purposely does, opening gates of innumerable opportunities.  To make the most of this branch, start concentrating on Core Mathematics and programming/DS/competitive programming right from the first year. Start working on a project by the end of the first year and go for an internship in the software domain. By the end of the 4th year, you will be proficient in most CS skills making it possible for you to sit for maximum placements. So, taking IMSC in Mathematics and Computing at BIT Mesra will be a good decision if you stop comparing your branch with others. The only drawback is that it is not a technical degree but that does not matter in the long run.Read more
0
0
2 Answer
●●●

Ques. How do I prepare for BHU UET Bsc Maths (hons)?

● Top Answer By Shirsti Varma on 11 Nov 21

Ans. To score well in BHU UET, you need to have your basics clear. Go through all the chapters in Physics, Chemistry, Mathematics from NCERT books and your textbooks at least once.  Go through the previous year’s questions from the BHU website. You will get to know the question trends and also get an idea of the chapters to focus on. They often repeat questions. The questions are not that hard. You can easily attempt 10% of the questions. 60% of the questions require fundamental knowledge of the subjects. Only around 30% of the questions will be difficult to solve. But you don’t need to worry about the 30% difficult question. You can easily score enough marks from the rest of the paper. Time management is crucial during the examination. The allotted time is 150 min. Which can seem short, if you don’t plan accordingly. First, you should attempt Chemistry questions. These are easy to solve and require less time. Then you can move on to Physics and Mathematics. Don’t stress too much on the questions that you don’t know the answer to. Try to score at least 120 out of 150 in the Chemistry section.  Your focus on class 11 and 12th syllabus should be 40/60.  The required cutoff for the general candidates is around 190-200. So, try to score 240 to get your preferred combination. Read more
0
0
1 Answer
●●●

Ques. What is the value of doing BHU BSc Math Honours?

● Top Answer By Himangi Srivastava on 18 Nov 22

Ans. My sister’s friend could not score a good rank in engineering but was lucky enough to get a seat in BHU UET for Maths Hons. She shared her experience that this was the best decision of her life as she felt unique. She made a lot of memories and befriended many talented people. She lived her college life to her fullest extent. From hostels to backlogs, she experienced all the fun. Despite creating hundreds of memories, today her batchmates are in IITs, 10% in IISc Banglore, 15% in IISERs, and 10% in IIMs. The others are booming in their own fields.Read more
3
1
1 Answer
●●●

Ques. How can I do BSc Mathematics major through IGNOU?

● Top Answer By Santosh Singh on 19 Oct 22

Ans. If you are willing to get admission at IGNOU for B.Sc. Mathematics you can follow the following steps: choose minimum 40 credits worth of Mathematics electives you have to choose/opt your Mathematics electives according to year wise scheme i.e some electives in first year,some in second year and rest are in third year. Remember you cannot opt a 3rd year elective course in first year or second year. You can opt a first year course in second year or third year. Similarly a second year course in the third year. This is why there are less than 24 credit options of Mathematics electives. Online registration system eliminates the already selected electives automatically. This is the reason you don’t get MTE1 or MTE6 etc. options in your second year reregistration options list. MTE 06 is the toughest paper so try opting other electives.Read more
0
0
1 Answer
●●●

Ques. What is the syllabus for the BHU UET BSc in Maths (hons)

● Top Answer By Ashish Gupta on 17 Nov 22

Ans. The syllabus for the BHU UET BAc in Maths is vast. One single book is not enough to cover it. But having a strong command of 10+2 syllabus is very important. Studying the previous years questions will give you a clear picture of the pattern of questions. The key syllabus for Maths Hons is: Relations and Functions and their Notations ( RD Sharma) The toughest part of the paper has to be Complex Numbers Previous year papers Binary system  If you are well versed in the above syllabus you are likely to score good marks.Read more
0
0
1 Answer
●●●

Ques. Among JADAVPUR University, ST XAVIER'S AND CALCUTTA University, which is best to pursue B. Sc. in mathematics Honors?

● Top Answer By Pablo Patranabis on 11 Jan 21

Ans. Among the three mentioned universities, Jadavpur University is the best to pursue BSc in mathematics Honours without any doubt. The classes are assured regularly and rigorous for those who desire to have a future in mathematics; there should be no doubt in selecting JU.  Comparison: (Winning Institution - Jadavpur University) St. Xaviers became a university recently. A BSc degree from JU holds more value than a bachelor’s degree from St. Xaviers.  Jadavpur University was ranked 196th in Asia by The World University Ranking 2020. The faculty at JU is top-notch. The syllabus adopted by JU is of advantage if you want to pursue higher studies after your degree. You will have better exposure at Jadavpur through regular seminars. Attending seminars delivered by guest faculty from distinguished National institutes, and your seniors pursuing masters and Ph.D. will make an immense difference. If you are choosing St. Xaviers because of the campus, you should visit the Jadavpur University campus.  The classes are regular, and JU follows a rigorous pedagogy. The political environment people talk about is quite exaggerated. If you don't get involved in campus politics, it is never going to bother you.  Jadavpur University contributes much more than just a degree that gives you quality education, which is not restricted to classroom learning. They make sure the students turn into the person they can be and gives them the confidence that no other college in Kolkata does.Read more
1
0
1 Answer
●●●

Ques. Where can I get the previous year’s solved paper for Jamia Millia Islamia B.Sc. Math Hons.?

● Top Answer By Anjum Ali, on 01 Nov 21

Ans. One of my friends studied at Jamia Millia Islamia (JMI). According to him, getting previous year’s solved papers for B.Sc. Math Honours is easy. You can visit the official site of the institute and search for the previous year’s paper. Download the question paper year wise Click on the link and the paper will be downloaded in Pdf format. If you do not get them online, try searching for the question books of every year in bookstores or in shopping sites like Amazon or Flipkart.Read more
0
0
1 Answer
●●●

Comments



No Comments To Show

Bachelor of Science [B.Sc] (Applied Mathematics) Colleges IN INDIA

View All
FLAME University
Pune, Maharashtra
10.45 L first year fees
VIEW ALL COURSES & FEES
IITT Institutions
Chandigarh, Chandigarh
2.01 L Total fees
VIEW ALL COURSES & FEES