Question: At a certain fruit stand, the price of each apple is 40 cents and the price of each orange is 60 cents. Mary selects a total of 10 apples and oranges from the fruit stand, and the average (arithmetic mean) price of the 10 pieces of fruit is 56 cents. How many oranges must Mary put back so that the average price of the pieces of fruit that she keeps is 52 cents?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5
Solutions and Explanation
Approach Solution : 1
Here, an orange costs 60 cents and an apple costs 40 cents.
The average cost is 56 cents.
The ratio between the apples and oranges is thus
Orange : apple = 56-40 : 60-56
Orange: apple = 4: 16
Therefore, Orange:apple = 1:4
10 is the total, so 2 are apples and 8 are oranges.
The average price must now be 52 cents.
Apples and oranges will therefore be in proportion,
Orange: apple = 52-40 : 60-52
Orange: apple = 8: 12
Orange: apple = 8: 12 range : apple = 2:3
Since there are 2 apples from the previous calculation, oranges must be 3 in total.
Number of oranges to be returned are 8 - 3 = 5
Correct Answer: (E)
Approach Solution : 2
Consider x as the number of apples and y as the number of oranges.
Orange is 60 cents while apple is 40 cents.
10 apples and oranges are chosen.
Average (Mean in Arithmetic) = Sum/Total
=> Average (Mean in Arithmetic) 56 = (40x+60y)/10
=> 40x + 60y = 560. Let this be (1)
Consider 'p' as oranges that should be reinserted. Then,
Average = Sum/Total
=> Average52 = [40x+(y−p) 60] / (10−p)
=> 40x + 60y - 60p = 520 - 52p. Let this be (2)
Subtract (1) and (2)
=> 60 p = 40 + 52p
=> 8p = 40
=> p = 5
Correct Answer: (E)
Approach Solution : 3
Let us go for a simple approach
The average cost of the fruit pieces she keeps is 52 cents.
Each fruit piece costs either 40 or 60 cents, so the total price has to be a multiple of 10.
Only if the quantity of fruit is an integer with a value that ends in 5 or 0, the total cost be a multiple of 10 given an average price of 52.
Mary must put 5 pieces of fruit back because the original quantity was 10. This will result in a new quantity that is either 5 or 0. (The number 5 is chosen from the options as it is the only number from the options that fits the basic requirements)
10-5 = 5
Correct Answer: (E)
“At a certain fruit stand, the price of each apple is 40 cents” - is a subject covered in the GMAT quantitative reasoning section. A student needs to be knowledgeable in a wide range of qualitative skills in order to successfully complete GMAT Problem Solving questions. There are 31 questions in the GMAT Quant section overall. Calculative mathematical problems must be solved in the GMAT quant topics' problem-solving section using appropriate mathematical skills.
Suggested GMAT Problem Solving Samples
- A Car Travels from Mayville to Rome at an Average Speed of 30 miles per hour GMAT Problem Solving
- A Certain Sum of Money is Divided Among A, B and C such that A Gets One GMAT Problem Solving
- The Ratio of Boys to Girls in Class A is 1 to 4, and that in Class B is 2 to 5 GMAT Problem Solving
- The Maximum Mark in an Examination is 100 and the Minimum is 0 GMAT Problem Solving
- A Rectangular Box has Dimensions 12*10*8 Inches GMAT Problem Solving
- A Driver Completed the First 20 Miles of a 40-Mile Trip at an Average Speed of 50 Miles Per Hour GMAT Problem Solving
- The sum of three numbers is 98. If the ratio between first and second be 2:3 and between second and third be 5:8 GMAT Problem Solving
- How Many Three-Letter Words Can be Constructed Using All the 26 Letters of the English Alphabet GMAT Problem Solving
- How Many Litres of Pure Alcohol Must be Added to a 100-litre Solution That is 20 Percent Alcohol GMAT Problem Solving
- For Any Four Digit Number, abcd, *abcd*= (3^a)(5^b)(7^c)(11^d) GMAT Problem Solving
- How Many Five Digit Numbers Can be Formed Using Digits 0, 1, 2, 3, 4, 5, Which Are Divisible By 3 GMAT Problem Solving
- An “Armstrong Number” is an n-Digit Number That is Equal to the Sum of the nth Powers GMAT Problem Solving
- A train crosses a bridge of length 500 m in 40 seconds and a lamp post on the bridge in 15 seconds GMAT Problem Solving
- A Train can Travel 50% Faster than a Car GMAT Problem Solving
- A rectangle is inscribed in a hexagon that has all sides of equal length and all angles of equal measure GMAT Problem Solving
- A Positive Integer Is Divisible by 9 If And Only If The Sum of Its Digits is Divisible By 9 GMAT Problem Solving
- The two lines are tangent to the circle GMAT Problem Solving
- In a Certain Population, There are 3 Times as Many People Aged Twenty-One or Under GMAT Problem Solving
- In How Many Different Ways can 3 Identical Green Shirts and 3 Identical Red Shirts be Distributed Among 6 Children GMAT Problem Solving
- The Interior of a Rectangular Carton is Designed by a Certain Manufacturer GMAT Problem Solving
- How Many Factors of 80 are Greater Than\(\sqrt80\)? GMAT Problem Solving
- If ‘A’ Can Complete a Task in 3 Hours and ‘B’ Can Complete the Same Task in 6 Hours GMAT Problem Solving
- If A Equals the Sum of the Even Integers from 2 to 20, Inclusive GMAT Problem Solving
- A Store Currently Charges The Same Price for Each Towel That It Sells. GMAT Problem Solving
- What is the Value of [ √ 7 + √ 29 − √ 7 − √ 29 ] 2 GMAT Problem Solving
- What is The Area of a Triangle with the Following Vertices GMAT Problem Solving
- The Product of the Five Smallest Two-Digit Prime Numbers GMAT Problem Solving
- The Square of 5^√2 =? GMAT Problem Solving
- Two Adjacent Angles of a Parallelogram are in the Ratio of 1:3 GMAT Problem Solving
- Which of The Following is a Perfect Cube? GMAT Problem Solving
- If a Right Angled Isosceles Triangle Has an Area of 2x^2 + 2x + ½. GMAT Problem Solving
- A number N^2 has 35 factors. How many factors can N have? GMAT Problem Solving
- If the Total Surface Area of a Cube is 24, What is the Volume of the Cube? GMAT Problem Solving
- There are 5,280 Feet in 1 Mile and 12 Inches in One Foot GMAT Problem Solving
- An Isosceles Right Triangle has an Area of 50. What is the Length of the Hypotenuse? GMAT Problem Solving
- A is Thrice as Good a Workman as B and Takes 10 days Less to do a Piece of Work GMAT Problem Solving
- 999,999^2−1 equals? GMAT Problem Solving
- Which of the following represents the largest 4 digit number GMAT Problem Solving
- The Lengths of the Sides of an Obtuse-Angled Triangle are x, y, and z, Where x, y and z are Integers GMAT Problem Solving
- If the expression sqrt2+2+2+2+ ... extends to an infinite number of roots GMAT Problem Solving
- How Many Different Lines Are Determined by 4 Distinct Points in a Plane If No 3 GMAT Problem Solving
- If The Diagonal of Rectangle Z is d, And The Perimeter of Rectangle Z is p GMAT Problem Solving
- 99,999^2−1^2 = ? GMAT Problem Solving
- How Many of The Three-Digit Numbers Are Divisible by 7? GMAT Problem Solving
- In a Camp, There is a Meal for 120 Men or 200 Children GMAT Problem Solving
- As Part Of a Game, Four People Each Must Secretly Choose an Integer Between 1 and 4 GMAT Problem Solving
- If Integer p is a Factor of 42, is p a Prime Number? GMAT Problem Solving
- A Triangle in the xy-Coordinate Plane Has Vertices With Coordinates (7, 0), (0, 8), and (20, 10) GMAT Problem Solving
- A Regular Hexagon is Inscribed in a Circle, What is the Ratio of the Area of the Hexagon GMAT Problem Solving
- What Is The Circumference Of The Semicircle In The Figure Shown? GMAT Problem Solving
Comments