Question: Five bells begin to toll together and toll respectively at intervals of 6, 7, 8, 9 and 12 seconds. How many times they will toll together in one hour?
- 5
- 6
- 7
- 9
- 14
Correct Answer: C
Solution and Explanation
Approach Solution 1:
This question has only 1 approach to model answer
The given condition of the problem states that five bells begin to toll together and toll respectively at intervals of 6, 7, 8, 9 and 12 seconds. Accordingly, it is to find the number of times all the five bells would toll together in 1 hour.
The intervals in which the five bells toll together respectively are at 6, 7, 8, 9, 12 seconds of interval.
Further, to get the number of seconds in regular intervals respectively, the five bells toll can be found by the Lowest Common Multiple of each second.
This equals to- 2^3 x 3^2 x 7 which equals to 504 seconds.
Significantly, the 1 hour has 3600 seconds so the number of times all the five bells would toll can be evaluated as follows:
3600/504 which equals to 7 along with a remainder.
Hence, the number of times the bells would toll together in an hour equals 7 times which is the correct answer that is option C.
“Five bells begin to toll together and toll respectively at intervals”- is a topic of the GMAT Quantitative reasoning section of GMAT. To solve GMAT Problem Solving questions a student must have knowledge about a good amount of qualitative skills. GMAT Quant practice papers improve the mathematical knowledge of the candidates as it represents multiple sorts of quantitative problems.
Suggested GMAT Problem Solving Questions
- Bag A Contains Red, White and Blue Marbles such that GMAT Problem Solving
- Assume that all 7-Digit Numbers That do not Begin with 0 or 1 are Valid Phone Numbers. GMAT Problem Solving
- A Car Travels from Mayville to Rome at an Average Speed of 30 miles per hour GMAT Problem Solving
- A Certain Sum of Money is Divided Among A, B and C such that A Gets One GMAT Problem Solving
- The Ratio of Boys to Girls in Class A is 1 to 4, and that in Class B is 2 to 5 GMAT Problem Solving
- The Maximum Mark in an Examination is 100 and the Minimum is 0 GMAT Problem Solving
- A Rectangular Box has Dimensions 12*10*8 Inches GMAT Problem Solving
- A Driver Completed the First 20 Miles of a 40-Mile Trip at an Average Speed of 50 Miles Per Hour GMAT Problem Solving
- The sum of three numbers is 98. If the ratio between first and second be 2:3 and between second and third be 5:8 GMAT Problem Solving
- How Many Three-Letter Words Can be Constructed Using All the 26 Letters of the English Alphabet GMAT Problem Solving
- A Fair Coin Is Tossed 4 Times. What Is The Probability Of Getting At GMAT Problem Solving
- In A Sequence 1, 2, 4, 8, 16, 32, ... Each Term After The First Is Twice GMAT Problem Solving
- What Is The Sum Of Odd Integers From 35 To 85, Inclusive? GMAT Problem Solving
- If 2p + 1/p = 4, Then what is the Value of p^3 + 1/8p^3 ? GMAT Problem Solving
- There are 12 Pipes that are Connected to a Tank. Some of them are fill GMAT Problem Solving
- A wire is cut into three equal parts. The resulting segments are then cut GMAT Problem Solving
- If x = -3, What Is The Value Of -3x^2? GMAT Problem Solving
- There Were R Red Balls And Y Yellow Balls In A Bag. Three Red Balls GMAT Problem Solving
- With An Average Speed Of 40 Km/H, A Train Reaches Its Destination On GMAT Problem Solving
- A Photographer Will Arrange 6 People Of 6 Different Heights GMAT Problem Solving
- What Is The Radius Of The Incircle Of The Triangle Whose Sides Measure GMAT Problem Solving
- The Value Of (2^(-14) + 2^(-15) + 2^(-16) + 2^(-17))/5 Is GMAT Problem Solving
- Points A And B Are 120 Km Apart. A Motorcyclist Starts From GMAT Problem Solving
- A student took five papers in an examination, where the full marks GMAT Problem Solving
- In how many ways can letters the word ATTITUDE be rearranged such that GMAT Problem Solving
- A merchant mixes three varieties of rice costing $20/kg, $24/kg GMAT Problem Solving
- ABC is an equilateral triangle, and point D is the midpoint of side BC GMAT Problem Solving
- A Batsman Makes a Score of 87 Runs in the 17th Match and Thus Increases GMAT Problem Solving
- If M= √4+3√4+4√4, Then the Value of M is GMAT Problem Solving
- An Octagon Is Inscribed In A Circle As Shown Above. What Of The Area GMAT Problem Solving
- In a Company of Only 20 Employees, 10 Employees make $80,000/yr GMAT Problem Solving
- A bag contains blue and red balls only GMAT Problem Solving
- (4.8*10^9)^(1/2) is closest in value to GMAT Problem Solving
- What Is The Units Digit Of 2222^333 ∗ 3333^222? GMAT Problem Solving
- What Is The Tens Digit Of 6^17? GMAT Problem Solving
- If m=−2, What Is −m^(−m)? GMAT Problem Solving
- An Automated Manufacturing Plant Uses Robots To Manufacture Products GMAT Problem Solving
- The Surface Distance Between 2 Points on the Surface of a Cube is the GMAT Problem Solving
- The Average Monthly Expenditure of a Family for the First Four Months GMAT Problem Solving
- When a Certain Perfect Square is Increased by 148, the Result is GMAT Problem Solving
- If p#q Denotes the Least Common Multiple of p and q, Then ((12#16) GMAT Problem Solving
- The Smallest of Six Consecutive Odd Integers Whose Average (arithmetic mean) is x + 2 GMAT Problem Solving
- The Greatest 6-Digit Number When Divided by 6, 7 ,8 , 9, and 10 Leaves a Remainder of 4, 5, 6, 7, and 8 Respectively GMAT Problem Solving
- Is Zero Even Integer or Odd Integer? GMAT Problem Solving
- If 20 Men or 24 Women or 40 Boys can do a Job in 12 Days GMAT Problem Solving
- If 10 millimeters equal 1 centimeter, how many square centimeters does 1 square millimeter equal GMAT Problem Solving
- How many Terminating Zeroes does 200 Have GMAT Problem Solving
- Properties of Circle GMAT Problem Solving
- If 10, 12 and ‘x’ are Sides of an Acute Angled Triangle, How Many Integer Values of ‘x’ are Possible? GMAT Problem Solving
- For How Many Values of k is 12^12 the Least Common Multiple GMAT Problem Solving
Comments